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The study of Markov chain convergence rates focuses on evaluating how fast a positive recurrent Markov
chain converges to its stationary distribution in total variation distance. On one hand, a great deal of progress
has been made in bounding the convergence rate for Markov chains defined in discrete state spaces [14]. On
the other hand, despite the major developments made in bounding Markov chains in a continuous state space,
many applications of continuous state space Markov chains do not have established convergence rate bounds. For
example, convergence rate bounds related to Markov chain Monte Carlo (MCMC) models are useful for deciding
the size of the burn-in period [5, 4], but many applied MCMC models do not have known upper bounds on their
convergence rate [4]. Instead, users rely on ad-hoc convergence diagnostics (e.g. [3]), which offer no guarantees.

Methods using the drift and minorization conditions (eg. [13, 1]), which guarantee geometric ergodicity, are
the most studied techniques for bounding Markov chains in continuous state space [11, 5]. Despite the widespread
use of bounds generated by the drift and minorization conditions, there are drawbacks. Exogenous variables must
be proposed to generate the bounds and bounds using this method do not scale well in high dimensions [10].

One-shot coupling, which was first defined in [12], can provide an upper bound on the convergence rate
of a Markov chain while not needing to identify any exogenous sets or functions, and it scales well in high
dimensions. One-shot coupling attempts to bring the two Markov chains close together, in what’s generally
called the ‘contracting’ phase, and only tries to couple the chain at the last iteration, in the ‘coalescing’ phase.
During the contracting phase the two copies of a Markov chain merge closer together over some predefined metric.

The one-shot coupling method has been applied over a variety of specific examples, namely, a nested gamma
model in [7], an image restoration model in [6], and a random walk on the unit sphere in [9]. The method is also
used as motivation for a theorem that bounds total variation distance in terms of the Wasserstein distance [8].
This paper looks at developing a general method for directly bounding the total variation distance between two
Markov chains using one-shot coupling.

For more details on the following results including proofs, commentary and additional examples, refer to [15].

Notation

We define a Markov chain in terms of iterated random functions [2]. That is, define a family of random functions
{fθ : θ ∈ Θ} such that θ is a random variable and Xn = fθn(Xn−1). The nth iteration of the Markov chain can
be written in terms of X0 = x, as Xn = (fθn ◦ fθn−1

. . . ◦ fθ1)(x). The stationary distribution of {Xn}n≥1 is
denoted as π.

The total variation distance between the laws of two random variables, X and X ′, defined on the state space
X is ‖L(X)−L(X ′)‖ = supA⊆X |P (X ∈ A)−P (X ′ ∈ A)|, where L(X) represents the law of the random variable
X and A is a measurable set. The Markov chain is geometrically ergodic if there exists a ρ < 1 and a function
M(x) <∞, π-a.e. such that for X0 = x, ‖L(Xn)− L(X ′n)‖ ≤M(x)ρn.

Our goal is to generate geometrically ergodic bounds in total variation distance for Markov chains that can
be written as an iterated random function.

Main result

The one-shot coupling method first described in [12] is summarised below. To find an upper bound on the total
variation distance between XN and X ′N we do the following.

1. Contracting phase: For n < N , set θn = θ′n so that the two chains get ‘closer’ together.

2. Coalescing phase: For n = N , we specify j ∈ {1, . . . , |θn|} and set θi,n = θ′i,n for all i 6= j. Assume that
j = 1. We are then left with the random mappings Xn = f(θ1,n,θ−1,n)(Xn−1) and X ′n = f(θ1,n,θ′−1,n)(X

′
n−1)

where Xn−1 and X ′n−1 are close to each other in expectation. We apply coupling techniques to find the
probability that they are equal.

We propose a general theorem that summarizes the one-shot coupling method for bounding the total variation
distance between two copies of a Markov chain.
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Theorem (One-Shot Coupling Theorem). Let {Xn}n≥1, {X ′n}n≥1 be two copies of a Markov chain such that
Xn = fθn(Xn−1) and X ′n = fθ′n(X ′n−1) where (θn, θ

′
n)n≥1 are independent random variables with respect to n and

the marginal distribution of θn, θ
′
n ∼ D, for some distribution D. Suppose that the following two conditions hold

for some non-negative integer n0.

1. Contraction condition: There exists a D ∈ (0, 1) such that for any n ≥ n0 when θn+1 = θ′n+1 ∼ D

E[|fθn+1(Xn)− fθn+1(X ′n)|] ≤ DE[|Xn −X ′n|]

2. Coalescing condition: There exists a C > 0 such that for any n ≥ n0

||L(Xn+1)− L(X ′n+1))|| ≤ CE[|Xn −X ′n|]

Then the total variation distance between the two Markov chains at iteration n ≥ n0 is

||L(Xn+1)− L(X ′n+1)|| ≤ CDn−n0E[|Xn0
−X ′n0

|]

Using the above theorem, we find the convergence rate upper bound for two families of Markov chains, the
random-functional autoregressive process and the randomly scaled iterated random process.

Random-functional autoregressive processes

Random-functional autoregressive processes, {X}n≥1, are of the following form for g : R2 → R

Xn = g(θ1,n, Xn−1) + θ2,n (1)

where (θ1,n, θ2,n) ∈ R2 are random and (θ1,n, θ2,n) ⊥⊥ (θ1,m, θ2,m) when n 6= m.
We propose the Sideways theorem, which provides an upper bound on the total variation distance for random-

functional autoregressive processes.

Theorem (Sideways Theorem). Let Xn ∈ R be a random-functional autoregressive process. That is, Xn is of
the following form for g : R2 → R

Xn = g(θ1,n, Xn−1) + θ2,n (2)

where (θ1,n, θ2,n) ∈ R2 are random variables and (θ1,n, θ2,n) ⊥⊥ (θ1,m, θ2,m) when n 6= m. Suppose that,

1. Contraction condition: There exists a D ∈ (0, 1) such that for n ≥ 0,

E[|g(θ1,n+1, Xn)− g(θ1,n+1, X
′
n)|] ≤ DE[|Xn −X ′n|]

2. Attributes of the conditional density θ2,n|θ1,n: The conditional density of θ2,n|θ1,n

(a) is bounded above: There exists a K > 0 such that for all (θ1,n, θ2,n) ∈ R2, the conditional density
function of θ2,n is bounded above by K, fθ2,n(θ2,n|θ1,n) ≤ K.

(b) has at most M local extrema points that are at most L > 0 distance apart: For any θ1,n, there are M
local maximas and minimas (local extrema points) within the conditional density. The local extrema
points are at most L distance apart.

(c) is continuous for any θ1,n

Then an upper bound on the geometric rate of convergence of the Markov chain is D and the total variation
distance between the two copies of the Markov chain, Xn, X

′
n, is bounded above as follows,

‖L(Xn+1)− L(X ′n+1)‖ ≤
(
K(M + 1)

2
+
IM>1

L

)
DnE[|X0 −X ′0|] (3)
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The attributes of the conditional density of θ2,n|θ1,n serve to prove that the coalescing condition is satisfied.
For many examples, conditions 2b and 2c of the Sideways theorem are easily verified if θ2,n has a defined
continuous density.

The following table summarizes various random-functional autoregressive processes that use the Sideways
theorem to provide an upper bound on the convergence rate. Refer to [15] for a comparison of the following
results to other geometric convergence bounds.

Process Upper bound on total variation
An example of a non-linear autoregressive process
Xn = 1

2 (Xn−1 − sinXn−1) + Zn, Zn ∼ N(0, 1) ||L(Xn)− L(X ′n)|| ≤
√

2
3πE[|X0 −X ′0|]0.669b(n−1)/2c

Bayesian regression Gibbs sampler
Suppose we have the following observed data Y ∈ Rk and
X ∈ Rk×p where Y |β, σ2 ∼ Nk(Xβ, σ2Ik) for unknown
parameters β ∈ Rp, σ2 ∈ R. We apply the prior distribu-
tions on the unknown parameters,

• β|σ2 ∼ Np(0p, σ
2

λ Ip), where λ > 0 is known

• π(σ2) ∝ 1/σ2

The Markov chain of interest is on βn|σ2
n−1, Y and

σ2
n|βn, Y , which converges to the posterior distribution,
π(β, σ2|Y )

‖L(βn, σn)− L(β′n, σ
′2
n )‖ ≤ KE[|σ2

0 − σ
′2
0 |]
(

p
k+p−2

)n−1

where K = (C/2)
k+2p

2

Γ( k+2p
2 )

(
k+2p+2

C

) k+2p
2 +1

e−
k+2p+2

2 .

Bayesian location model Gibbs sampler
Suppose that we are given data points Y1, . . . , YJ ∼
N(µ, τ−1) where µ, τ−1 are unknown and J ≥ 3. Let
µ, τ−1 have flat priors on R and R+.
The Markov chain of interest is on µn|τ−1

n−1, Y and
τ−1
n |µn, Y which converges to the posterior distribution,
π(µ, τ−1|Y )

‖L(µn, τ
−1
n ) − L(µ′n, τ

′−1
n )‖ ≤ KE[|τ−1

0 − τ
′−1
0 |]

(
1
J

)n−1

where K = (S/2)
J−1
2

Γ( J−1
2 )

(
S
J+1

)− J−3
2

e−
J+1
2 .

Autoregressive normal process in Rd
~Xn = A ~Xn−1 + ~Zn, ~Zn ∼ N(~0,Σ2

d) where Σ2
d is a positive

semi-definite matrix and A is a diagonalizable matrix.

‖L( ~Xn) − L( ~X ′n)‖ ≤
√

d
2π‖Σ

−1
d ‖2 · ‖P‖2‖P−1‖2E[‖ ~X0 −

~X ′0‖2] max1≤i≤d |λi|n where A = PDP−1 is the eigende-
composition, λi is the ith eigenvalue of A and ‖·‖2 denotes
the Frobenius norm.

Randomly scaled iterated random functions

Randomly scaled iterated random functions are of the following form for f : R2 → R,

Xn = f(θ1,n, Xn−1)θ2,n

Where (θ1,n, θ2,n) are random variables that are i.i.d. with respect to n.
The following table summarizes the application of the one-shot coupling theorem to provide an upper bound

on the convergence rate for various randomly scaled iterated random functions. In each example {Xn}n≥1 is the
Markov chain we are bounding and the variables α, β, γ ∈ R are constants. {Zn}n≥1 are i.i.d. random variables
with Zn > 0 a.s. and the density of log(Z0) is bounded above, has at most M local maxima and minima and is
continuous. {Wn}n≥1 are i.i.d. random variables with the density of Wn centred at zero and is monotonically
decreasing around zero (like the normal distribution).
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Process Upper bound on total variation

Linear ARCH model
Xn = (β0 + βXn−1)Zn, α, β > 0.

||L(Xn)−L(X ′n)|| ≤ β(M+1)
2α supx e

xfZn
(ex)Dn−1E[|X0−X ′0|]

where D = βE[Z0].

Asymmetric ARCH model
Xn =

√
(αXn−1 + β)2 + γ2Wn, where α > 0.

||L(Xn)− L(X ′n)|| ≤ |α|γ D
n−1E[|X0 −X ′0|]

where D = |α|E[|Z0|].
GARCH(1,1) model
Xn = σnWn, where σ2

n = α2 + β2X2
n−1 + γ2σ2

n−1.
||L(Xn)− L(X ′n)|| ≤ Dn−1

α

√
β2|x2

0 − x
′2
0 |+ γ2|σ2

0 − σ
′2
0 |

where D =
√
β2E[Z2

0 ] + γ2.
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